I Programming considerations.

Commencing with release 08.00 there is & built-inn facility in the
360/370 SIMULA System for recording program behaviour during the
execution. A user can obtain useful insight into the program dynamics
by requesting results of various measurements to be outpute.

In the follcecwing the user will be given full orientation about the
teools available for improving performance of the SIMULA programs. It is
not necessarily intended for a thorcugh study - onh the contrary, it is
hoped that a user interested in using this facility will find all
sufficient information in paragraphs 7.1 and 7.4y eventually supported
by a glimpse of the example. However, should she/he have any enquiries
it should be possible to find full answers in the rest of the text.

7.1 {Objectives and design principles.

The purpose of this facility (referred to as the turner in the rest of
this text) is to provide a sufficient insight into the dynamics of
execution in order to reduce its cpu-time and storage requirements. To
this end special focus is put on supervising the two most critical
issues:?

- data transmissions realized through various kinds of
assighments (the most frequently encountered operation)

- allocation of data structures (a complex operation dictated by
the dynamic nature of SIMULA)}.

The character of this facility, however, suggests that it can also be
useful in the program debugging processe.

Since the collection of the various statistics during the program
execution represents whatever small but nevertheless a certain overhead
the facility has been designed in such a way that its function (and
thus the overhead) can be completely eliminated at the user®s will.
Therefore the user should carefully consult paragraph 7.4 below to make
sure of correct activation of the various tuner compohents.

7.2 Scope of the facility.

Even though useful in itself the bulk of this programming aid is just
an offspring of other program development tools SYMBODUMP and TRACE (see
separate documentation). In particular the latter and specifically its
data flow monitoring subsystem are of primary importance for
understanding the dynamics of the program behaviour. However, since
these tools are basically designed for program debuggings their use for
program tuning can be somewhat cumbersome.

In contrast to these facilities, the tuner concentrates on giving just
the resulting contour of the dynamic profile of program executione. This
image is created by several components outlined below.

7.2.1 Assignment counter

This is a global counter which is increased by one for each assignment
statement carried out by the system.

Included here are:

- explicit value~ and reference~assignments affecting user
declared data items;

- implicit assignments in for-statements and those of parameter
transmission to procedures and classes by value or by
reference,

- text value assignments implicit to text PUT-attributes and the
corresponding OUT=-procedures of files (assignments to image
subtexts).

Excluded (i.e« not recorded in the assignment counter) are the
following assignments:

- those leading to alteration of system declared data items e.g.
text position indicator settings manipulation of SUC and PRED
through SIMSET procedures, manipulation of the SQS through
SIMULATION utilities and parameter transmission for standard
procedure calls;,

- parameter transmission of value and reference parameters to
virtual, formal and external procedures,

- all assignments in SIMULA program modules which were compiled
with option avoiding assignments recording.

The current value of the global assigment counter is available during
the program execution through use of an external procedure TRACECNT
(cf. TRACE documentation). This can be conveniently used for dynamic
initiating/terminating of other program execution supervising
facilities. The final value is output at the end of execution in the
Run Time System trailing line. This value tends to be a fair measure of
the volume of the performed computation.

Te2e2 Frequency monitore.

This is & control flow monitor updating local counters associated with
both explicit and implicit assignment statements. Each time an
assignment statement (of the kind affecting assignment counter, see
above) is executed its local counter is increased by one so that at the
termination of the program the values recorded in the local counters
reflect fairly precisely the dynamic profile of the execution.

The contents of the local counters can be obtained at the end of
execution both in numeric and graphic form. Furthermore indication is
given of the most frequently executed as well as the void assighments.
These tables give a deep insight into the program dynamics and
specifically turn attention to the apparent execution time bottlenecks.
Be aware though that a flat histogram doces not necessarily imply the
most efficient algorithm. '

723 Data structure register.

This is a device for recording the number of generated instances of
each data structure defined in the programe. These includet

- block instances of various kinds (however, only those which
are user defined appear in the final account}.

- user and system generated text objectse.
- all declared arrays and arrays passed as parameters by value.

Not counted aret

- system generated control blocks (drivers and event notices
since these are at least partly reused).

- system generated storages for holding temporary results which
may be quite many but are unfortunately not under direct user
control.

- static instances of standard procedures, buffers and other
accessories necessary for the operating system interface
because these do not take space in the working storage.

While the current value of a particular object counter serves at each
time as a unique jdentification of the next generated instance of this
kind, the final list of these counters is most valuable information for
the assessment of program storage requirements. In addition the ratioc
of the respective data structures in the total program storage demand
is estimated. Obviously, this kind of information is a more direct hint
on how to improve program performance than just a number of store
collapses.

With the considerable overhead of SIMULA storage management in minds
one can achieve drastic reductions of cpu~time usage by minimizing esg.
the number of generated procedure instances. However, one more aspect
which must be considered here is the prevailing way in which a
procedure is invoked (direct or remote call, virtual, formal procedure
etCele

7.3+ Output format of the respective components.

All the information provided by this facility appears on the standard
printfile SYSOUT appended to the user program produced printout. With
the exception of the histogram part of the frequently monitor the
output can be intercepted also on & teletype compatible device with
line length of 80 characterse.

Hith the exception of the global assignment count the output is
organised by modulest: the first come execution frequency counters and
the list of allocated data structures concerning the main program alone
and then follow corresponding tables for the separately compiled
modules used in the program (if any) in turn.

When organizing the output modulewise the following rules are observed:

- it is the maximum assignment frequency within a particular
module that is used for forming out the histogram and for
marking the lines of specific interest in the module.

- the data structure counts indicate the ocutcome of the complete
program execution. Consequently also the logical partitioning
of all allocated storage on the fragments taken by the
respective data structures shown in the last (%) column is
related to the complete execution.

- Obviously text and array objects may be allocated in the
course of execution of any module. However their statistics
are only given globally and appear together with the dynamic
profile of the main program.

As regards the particular format of the respective tuner components see
illustration in the paragraph 5 and also consider the remarks below.
Te¢3«1 Final assignment count.

Final assignment count appears (if requested, see par. %) at the RTS
trailing line in the form:

{count> ASSIGNMENTS RECOROED
Be aware that the true value cah be greater than the figure given in

case that one or more separately compiled modules used in the program
had assignment counting suppressed.

7+3e2 Assignment frequencies.
Assignment frequencies (if registered) appeared under the title:

DYNAMIC PROFILE OF THE PROGRAM EXECUTION BASED
ON DATA FLOW MONITORING

The output consists basically of two parts:

- a numeric table of absolute freguencies given for the
respective assignments in the given module,

- a histogram (adjacent to the table) showing schematically
relation between the maximum frequency on a line and the
maximum frequency within the module.

Note that the original source text is not reproduced as is sometimes
customary in these reports. Instead references are made to its
respective lines through the line numbers.

Several further details may be of interest:

o respective frequencies for up to 7 (first) assignments are
registered on each line - the user must alone match the
figures given with the corresponding source listing
{identified in the report)s

o the maximum frequency on a line appears in a clearly marked
column next to the line number,

o the maximum frequency over the whole module is marked by a
sequence of exclamation marks at the left of the line number.

Finally note that the following convention Is used when generating
these tablest! in default only lines where there has been at least one
assignment executed appear in the table. Optionally howevers the user
can require a report on every single lines If this is the case the
following rules apply:

o just the line number alone is given for lines without any
executable codes

o the line number followed by a colon with the rest of the line
blank signifies @ line with executable code not containing any
assignhment,

o all lines containing assignment statements of which none was
performed in the course of the program execution are marked by
a sequence of question marks to the left of the line number.

7:3.3 Generated data structures.
List of the generated data structures appears under the title:?
USER GENERATED DATA STRUCTURES

Listed in the table are various block patterns defined in the module in
guestion, some instances of which were generated during the program
execution. For each block patterns the following information is given:

- pattern identification (its kind and commencing line number in
the source (text),

- total number of generated instances,

- size (in bytes) of instance. Note that this is the true size
iee. includes space for user data, the necessary system
overhead, block counter location plus eventual padding to meet
the storage allignment requirements (if anyl,

- share of the total program storage demand attributed to this
particular block kind (in percent rounded to the nearest
integer).

Following the table the total sum of all generated block instances is
given together with an indication of how large a portion of the total
storage used this represented. (Note that when estimating total storage
use only true store collapses are considered i.e. the effect of garbage
collections occurring as a side effect e.g. various program development
utilities are disregarded.)

If the related module is the main program the total number of generated
text and array objects together with the indication of how large a
portion of the total storage used these represented is alsoc given in
percent.

Note that the percent figures will not sum up to 100%: the discrepancy
is accounted for by the system generated data structures (driversy
event notices and temporary and standard objects) which do not appear
anywhere in this table.

Finally it is worth mentioning that also this table is compressed to
the block patterns of which no instances were generated at all are
suppressed in default. Since their appearance may have som value for
program documentations the user can optionally request them to be
ocutput together with nonempty lines.

7.4 Control.

The producticn cof the tuner printouts is under full user control by
means of the compiler and the runtime system options.

The following combinations are required for cutput of the respective
items:t

total number of assignments registered during program execution
will appear if:

- the program was compiled with SYMBDUMP>3
- and run with the TEST option.

ssignment frequency table (and the histogram) will appear if:

[+4]

- the program (module) was compiled with SYMBOUMPO3,

- the program was run with SYMEDUMPD3

- and the program terminated with return code zero (i.e« without
any RT-error).

the generated data structures are listed if?

- the program was compiled with SYMBDUMP>1
- and run with SYMBDUMP>3.

Note that default settings at SIMULA system distribution are SYMBDUMP=O
for compiler and SYMBDUMP=1 for the runtime system so that they have to
be either permanently reset at the installation or overriden at
individual runs in order to activate the tuner.

As regards the expansion of the tables to their full length (i.e.
including also the void entries which are suppressed in default, see
par. 3) the following conventions apply:

The specification of the RTS option SYMBDUMP must be followed
immediately by

o the seguence AA to force YAll Assignments" to appear, or
by

o the sequence AB to force YAll BlocksY to appear,
eventually by

o the letter & alone get A1l assighments and blockss

//EXEC SIMCLGsPARMSIM="SYMBOUMP=4",PARM.GO="'SYMBOUMP=4AR"

will cause the full table of user defined block patterns to appear
while the assignment frequency table which will alsoc be generated will
include only non-empty entries.

Note that the best way how to alter default values of the compiler and
the RTS option SYMBDUMP is through the use of the macros SIMCDF and
SIMRDF which are part of the system delivery. This would however not
suffice for the expansion of the tuner tables where the letters A, AA
or AB can only be specified at executione.

7.5 Example

Let us suppose that the following program is compiled with SYMBDUMP=4
(shown below is an extract of the compilation listingl):

begin class BOARD(E,F,RIMCHAR); integer E,F; character RIMCHAR;
begin character array C(a:E,3:F); integer IsJsM,N;

procedure PRINT;
for It=0 step 1 until E do
begin for J:=@ step 1 until F
do Outchar (C{I,J));
Outimage
e nd :3}1(:{:{3& I NT**&{(;

procedure READ;
for I:=1 step 1 until M do
begin Inimage;
for Ji=1 step 1 until N do
if Inchar=" ¢
then C{IsJ)i=' ' else C(IyJ)i=tait;
end RORkRE AD dokok g

Mi=k=-13 Ni=F-1;

for 1i=9 step 1 until N do
C(a41):=C(E,I+1):=RIMCHAR;
for Ji=a@ step 1 until M do
C(J+1,a):=C{J,F) :=RIMCHAR;
e ndiokkBOARD Ok §

BOARD class LIFES
begin integer procedure NEIGHBOURSOF(I,J}i integer I.J;
- begin integer Tj

if C{I=1,J=1)="%"' then Ti=T+1;
if C(I=-1,d)}=%e* then Ti=T+1;
C(I=1,J+1)='%"% then Ti=T+1;
C{I sJd=1)=v%¢* then Ti=T+1;
C(I sdtl)=%%kt then Ti=T+1;
C(I+14d=1)="%"' then Ti=T+1;
C{I+1,J =%kt then Ti=T+1;
C(I+1,Jd+1l)=%%" then Ti=T+1; NEIGHBOURSOF:=T;
endiENE IGHBOURSOF itk

WG g PR S g -
~h h =h mh ~h b h

procedure WRITE(GENERATICON): integer GENERATION;
begin Outtext(“GENERATION NO ¥} Outint(GENERATION.6) ;
Outimagei PRINT
ende{R] TEdk §
endiokRl T FEdok §

Continued oh the next pageeeces

seselontinued from the previous page?

procedure SHAP;
begin TEMP:-ULOB; OLDBI-NEKB; NEHBI-TEMP endiiSHAPI k]

ref{LIFE) OLDB,NEWB,TEMP; character Cl1}
integer Linesperpage sP,Q,GENS;Z, LIFELENGTH;
external real procedure BALAS;

LIFELENGTH:=BALAS(Inint,Inint);

OQuttext("INITIAL STATEY); COutimages;
Pi=Inint; Qi=Inint; Linesperpaget=64;

OLDBi-new LIFE(P,Q,"+'}; OLDB.READ; ULDB.PRINT;
NEWB:~new LIFE(P,Q,%*+");

for GENS =1 step 1 until LIFELENGTH do
begin inspect OLDB
do begin for P.=1 step 1 until M do
for Q=1 step 1 until N do
begin Z:=NEIGHBOURSOF(P,Q); C1:=C(P,qQ);:
if Z2=3
then Cli=t4! else
if Z=2 and Cl=1ti?
then Cli=tt else Cli=* %
NEHB.C(P,Q):=Cl;
end ‘
end;
NEWBWRITE(GENS); SHAP
end
end

Note in particular the declaration of an external procedure BALAS at
line 53 and its use at line 57. Let us assume that the procedure BALAS
was compiled with SYMBDUMP=3 and that the program above is run with the
run time option TEST and SYMBDUMP=4,

Disregarding the normal output which i
this demonstration the following two 1
SYSOUT @

s of no particular interest to
ines will at last appear on

END OF SIMULA PROGRAM EXECUTIUON AT 17:36:146.86
EXECUTION TIME 3.29 SEC.

RETURN CODE 15 #239223d3a9

adddea STORECOLLAPSES, DATA STCORAGE USED t 9184 BYTES
2198 ASSIGNMENTS RECORUED

These are the RTS trailing lines (usually prefixed by the ZYQ994
message identifier). The very last item is the final value of the
global assignment counter implying in this case that altogether 2108
data transmission were recorded when executing this programe. (Be aware
though that this does not include agssignments needed for execution of
the procedure BALAS because that was compiled with SYMBODUMP less than
G).

dn the next page comes the assignment frequency table and the histogram
shown in Appendix A. Note that only Yective" lines appear in this
overview. Obviously line 8 contains the most frequently executed
construction.

(As regards the for-statements with step-until elements remember that
these contain two implicit assignment statementss see Common Basey
section 6.243.4 case 2. These may appear on two successive lines if the
for-statement is split)e.

The dynamic profile of the main program then continues on the next page
by

USER GENERATED DATA STRUCTURES:

BLOCK PATTERN LINE TOTAL SIZE %
SUB-BLOCK addad 1 64 1

PROCEDURE PRINT daas 8 24 2
PROCEDURE READ @ald 1 24 a
CLASS LIFE da 28 pd 48 1
PROCEDURE NEIGHBOURSOF Q@29 112 32 39
PROCEDURE KWRITE ad 4l 7 16 1
PROCEDURE SHKAP @d 47 7 16 1
TOTAL NUMBER OF BLOCK INSTARCES: 138 - 46
TOTAL NUMBER OF TEXT OBJECTS ¢ Z - 3
TOTAL NUMBER OF ARRAY OBJUECTS @ 8 - 7

THE LINE NUMBERS CUORRESPOND TO THE SOURCE COMPILED ON 25 NOV 198 AT
17:25:28.13

Finally, the very last page holds the dynamis profile (or what is
available of it remember the compilation of the external mode was
carried out with SYMBDUMP=3) concerning the module BALAS?

DYNAMIC PROFILE OF THE PROGRAM EXECUTION ok MODULE: BALAS ok

USER GENERATED DATA STRUCTURES:

BLOCK PATTERN LINE TOTAL SIZE %
PROCEDURE BALAS adlé 1 &a 1
PROCEDURE MAXX dadd 3 32 1
PROCEDURE MAXT da29 4 48 Fd
PROCEDURE CHANGE Qa5 4 32 1
PROCEDURE SOLVER dabl 2 32 1

TOTAL NUMBER OF BLOCK INSTANCES 14 - 6

THE LINE NUMBERS CORRESPOND TCO THE SCOURCE COMPILED ON 25 NOV 1980 AT
17:25:a8.13

Note here that of the total storage required for the execution of the
above program approximately 52% (46+6) was taken up by various
instances of which most is clearly attributed to procedure NEIGHBOURSOF
altogether 112 times.

DYNAMIC PROFILE OF THE PROGRAM EXECUTION BASED ON DATA FLOW MONITORING

NOTES LINE

-

-

-

‘e

Ll

deab
dadat:
duald:
awl3d:
dals:
dal?:
del2a
aaz2:
g3
dal24:
aachH:
@a3l:
aa3de:
@a33:
av34:
@a3se
da36 ¢
237
aa38:
da42:
2a48 ¢
sas7¢e
adas59 ¢
*D6D
asabe
P63 ¢
Pe65 !
da67¢
gab8:
Qa69:
@aaTl:
N E R
BTG
da77:

MAXIMUM FREQUENCES OF THE
RESPECTIVE ASSIGNMENTS

48
48
288
4
16
12
2
19
1g
la
1@
3a
41
32
41
43
32
43
112

Y

112
112
28
63
112
7

8
48
288

112
28
21

112

2

48

288
4
16
12
2
19
la
19
1@

fod ot ot

112

"""" HI STOGRAH

oS WL k3 b, o
e e deseale s
........
.....
LA
LS
% oc o'
LA

b33

sk

e

ok

sk

e e edje
PRI 0
ez ek ook
el seole s

e o'c ste 'e e e o
afe e slenfe deole sk
e ek el
2o Wb V¥

e e 2ledle oc

Lo B oty afy ofs ot oF
aicae dlesie Meviook

L 3 KR PR RO S IR VN T R VI SR . 3 Fr oty oF,
e 3 e Aesleolk xe sl e steofe e sl ek ok
5
%
.
%
>
3%

e e e e

sesie seafedeaienie el sfeleafesie ol el
......

sl e

sieafe desiedloofoole skl ok

rrrrrrr

b3

8 Bibliography.

(1) SIMULA Users Guide. Publication No. S$-24.
Norwegian Computing Center, Oslo, Norwaye.

(2} IBM System/360 (0S¢ Storage EstimatesS.

(3) IBHM System/360 0SSt Concepts and Facilities.
Form C28-6535.

(4} IBM System/360: Principles of Uperation.
Form A2Z2-6821-7.

(5) 1IBM System/360 0S: Assembler Language.
Form €C28-6514-5.

(6) IBM System/360 0S: Job Control Language.
Form C28-6539-8.

(7) 18M System 360 (St Supervisor and Data Management
Services. Form C28-6646-2.

(8) 1IBM System/360 0S:! Supervisor and Data Management Macro
Instructions. Form C28-6647-3,

(9) 1IBM System/360 0S: Utilities. Form C28-6586-9.

(10) 1IBM System/360 (St Linkage Editor.

Form C28-6538.,
(11) 1IBM System/360 0S: Messages and Codes.
Form C28-6631-6,

(12) Ule=-Johan Dahl, Bjarn Myrhaugs Kristen Nygaard:
SIMULA 67 Common Base Language. Publication No. S-22.
Norwegian Computing Centers 0slos Norwaye.

(13) P. Naur (Ede)! Revised Report on the Algorithmic
Language Algol 60.

(14) 1IBM System/360 0S: FORTRAN IV library subprograms.
Form C28-6569., :

(15) IBM System/360 (0S: FORTRAN IV (G & H)

Programmers Guide. Form CZ28-6817.
Note! Page number given in references to IBM documentation are

only approximates, since they may vary with the release
number.

