-75-

CHAPTER 11.

ALGOL FUNDAMENTALS

In order to assist readers unacquainted with ALGOL in getting
an impression of SIMULA, the basic ALGOL concepts are explained
in this chapter. Readers are warned that this presentation 1is
very incomplete. An ALGOL textbook must be consulted to get
the knowledge necessary to write SIMYLA programs, ’

11.1 Simple Varlables and Declarations.

Variables to be used in ALGOL (and SIMULA) must be "declared":
we write the name ("1dentifie:") of the variable preceded by an
underlined word stating the "type" to which the variable belongs.

ALGOL contains 3 types of "simple" variables:

"Boolean", "integer" and "real". Boolean variables (named after
the British mathematician Boole) may have one of the two "truth

values", true and false. Integer variables may have a positive

or negative integer or zero as values. Real variables may have

any real number as values.,

When variables are declared we write the type-name underlined,
followed by the identifiers of the variableg belonging to that
type. The identifiers are separated by commas, and the 1list
is ended by a semicolon.

Example:

Boolean tax paid, integer flightnr, glength,
real baggage welght, arrivaltime, price,

ALGOL also contalns subscripted variables, to be discussed in
Section 11.6.

-176- ' ' . i

11.2 Statements and Programs.

An ALGOL program consists of !

t. Declarations (e.g. of simple variables) g
2. Statements describing actions involving the declared
entities,

A program has an underlined begin as the first word (symbol),

followed by the declarations and then the statements. The
declarations and the statements are separated by semicolons

and the orogram is concluded by the underlined word end. |

Examplé:

The clerk at the check-in counter of an airport is told to ?
réport the total baggage welght as well as the weight of the

checked baggage for a given flight. He reads the weight of

the suitcases and then of the briefcase (the hand baggage)

for each passenger as they turn up (the symbol ": =" means

"becomes", and the statements are executed in sequence):

begin (Line 1)
real tot wt, checked, suitcases, briefcase; (Line 2) | |
tot wt: = 03 checked: = 03 ‘ - (Line 3)
read(suitcases, briefcase); (Line 4) §
checked: = checked + suitcases; (Line 5) :
tot wt: = tot wt + suitcases + briefcase; (Line 6) ;
read(suitcases, briefcase); (Line 7) }
~checked: = checked + suitcases; (Line 8) ;
tot wt : = tot wt + suitcases + briefcase; (Line 9) |
read(suitcases, briefcase); (Line 10)

> o D A e ven MY W G G AN S G N D D WK S WS AP YR W I WP AR MR MED G4 G G WS D W WL GER I TER ANY I BN GED WA GUT G G B G BER W B WS 4 SR A ,

(The same sequence is repéated for all passengers on the flight)

. G0 G G T G T T G SN T N RS G L MR T WS AR T R W W N D G M GIN G G SV WG IR T R G MR GV R G VRS W W R R S D S S G b e

write(checked, tot wt)
end;

-7 -

" In the program we are allowed to operate upon the 4 real
variables declared in Line 2, In Line 3 "tot wt" and "checked"
weight are given O as initial value. Line 4 states that the
values of "sultcases" (the weight of the suitcases) and "brief-
case" now shall be read. The reading may involve a complex
series of actions, which we onlj specify by the "procedure -
call" read(~w=w=-==),

We only will assume that if "x" 1is a declared variable, then

the execution of the procedure-call read (x) will assign a

value to x from some source of information., In programs exe=~

cuted on computers, read (x) will usually mean that the value

of x is read from a punched card, We will dicuss procedures
in section 11.10, | | '

. Since the suitcases are to be checked in, the weight of the
checked baggage (initlally zero) 1s increased by the weight
of the sultcases (Line 5). We get the total weight by adding
"suitcases" and "briefcase" to the present value of "tot wt"
(Line 6). ' '

Lines 7 ~ 9 repeat the actions of Lines 4 - 6, this time
“operating upon "suitcases" and "briefcase" for the next pas-
senger, This sequence 1s now repeated till all passengers
have arrived. Then a new procedure "write (-----)" is called,
recording the final values of "checked" and "tot wt",

11.3 Compound Statements,

Sometimes 1t 1s necessary to transform a sequence of statements
to a single '"compound" statement, This 1s done by bracketing
the statement sequence bétween begin and end, '

-8

Example:

The statements in Lines 4 - 6 in the previous example may be
written as a compound statement

begin read(suitcases, briefcase);
checked := checked + suitcases;
tot wt := tot wt + sultcases + briefcase end;

We may name thls statement "check in", and rewrite the program
in abbreviated form (for our own purpose, not in correct ALGOL):

begin declarations; tot wt := checked := O}
check inj check inj -----=-==~- y check 1inj
‘write(checked, tot wt) end;

When we retﬁrn?to "prucedures" in section 11,10 we will demon-
strate how this use of the word "check in" may be made "legal"
ALGOL,

il

11.4 Labels and go_to - statements.

In the counter example Lines 4 - 6 ("check 1n") are repeated
for every passenger., A language not taking advantage of this
will lead to very long programs.

It is possible to mark an ALGOL statement by a "label": an
(undeclared) identifier followed by a colon, This label then
may be used in a go to - statement, ‘ ‘ '

Example:

begin declarationsj tot wt := checked := O3
next: check inj; go to next endj

When "check in" of a passenger 1s completed, the same sequence
is repeated by stating that the "check in" statement, marked '
by the label "next", shall follow the go to - statement.

-79 -

This new version of the program is not able to transmit
results of the computation, it goes in an infinite loop.
The loop shall, however, only be executed as many times as
- there are passengers,

11.5 Af - then - statements.

The ALGOL Boolean variables have two possible values: true or
The statement

"7 < 1"

1s false, We name statements to which we may assign a truth
;yilue "Boolean expressions", Hence the value of the Boolean
expression "7 < 1" is false.

ALGOL also contains statements executing the standard operations
of two-valued logics:

: logical "and"
: logical "or"
: negation

: implication

: equivalence

v d<>

Ecample:

Let us assume that the clerk computes the baggage weight, If
the 1imit is 20 kilos, excess baggage freight must be paid.
Then, for a given passenger, the postulate "money left" may

be true or falsge.

-80-

We introduce the variables real excess wt and Boolean money
left, The course of further action will then be dependant
on the Boolean expression,

(excess wt > 0) A (7} money left)

In an "if - statement", two alternate courses of action may
be prescribed, depending on the value of a Boolean expression:

Let B be a Boolean expression and S1 and 52 two statements,

We may write

if B then S1 else S2;

implying that S1 shall be executed if B has the value true,
82 if B has the value false. If the alternative to S1 is

"'no action", we may write

if B then S1,

R Examples.

..We now may complete the counter example. Let integer nr
: passengers, checked passg denote the total number of passengers
on the flight and the number of passengers already checked in,

begin Declarations; tot wt := checked := O] checked passg := 0]
read(nr passengers),

next: check in; checked passg := checked passg + 1]
if checked passg < nr passengers then go to next;
write(checked, tot wt) :

end;

Returhing to the excess welght situation, we may want to state
if (excess wt > 0) A (71 money left) then go to home
else go to aircraft;

where '"home" and "aireraft" are two labels in other sectlons

of the program.

-81-

If we want to execute a sequence of statements in each "branch" -
of the if - statement, these sequences must be written as com-
pound statements, S1 and 52 must each be one statement, but
may be a simple or a compound statement,

11.6 Arrays.,

Boolean, integer and real variables may be subscripted and
form arrays. In their declarations the ranges of variation
of the subscripts are specified:

Boolean array open counter [1:6] ;
integer array q length 1:6] s

We now refer to the queue length of counter nr 5 by

, q length [5] ’
and may write e.g. (k is an integer variable):

if open counter [k] then q length [k] 3= q length [k] + 1}
assuming that 1<{ k< 6 '

Arrays may also 'be multidimensional. Let us assume that all
alrports are numbered 1, 2, «.s..s0y N Then the destination
of a passenger may be specified by an integer between 1 and N,

If we need a table of ticket prices, 1st and Tourist Class
(regarded as 2nd Class) this is done by introducing a real

array (or just array):
array ticketprice ﬁ 8 2, 1 3 N] ’

The ticket price on Tourist Clas:s to Airport nr, 122 may then
be referred to by

ticketprice [2, 122] ,

-82.

11,7 for - statements.

The ALGOL for - statements are flexible tools for specifying
repetition of statements,

Example 1:
The repetition in the counter example may be written:

for checked passg :=1 step 1 until nr passengers do check inj;

where "check in" 1is the above compound statement.

The for - statement tells us that "checked passg" shell be
given'the initial value 1 and "check in" be executed, Then
‘"checked passg" shall be increased by 1 ("stepped up") and
"check In" once more executed, When checked paség = nr
g;épassengers "check in" 1s executed for the last time and then
~ ~the next statement is executed,

Example 23
Another type of for - statement is the following:

begin
Integer tot q, k; integer array q length B:6J ’

WS Gt S o Y e o WS e M G A S O men G NS A M S S W it e gy el B WY W W em e e W M D NI m M S W e e W

tot q = 0;
for k := 1, 3, 6 do tot g := tot q + q length [k] ;
end;

k 1s successively given the values 1, 3 and 6, and for each

of these values the statement after do 1is executed,

-83-

Example 3:

A third alternative in the counter example is to write

checked passg 3= Oy
for checked passg 1= checked passg + 1 while
checked passg g nr passengers do check 1inj

11.8 Blocks.

An ALGOL "block" 1s a series of declarations followed by one
or more statements, Each statement may be simple or compound.
A block starts with begin and 1s concluded by end,

The declaration part of a block is called the "block head".

‘Example:

The passenger at the counter has to pay an excess freight for
his baggage 1f the weight exceeds 20 kilos, For each kilo of
excess weight he has to pay 1% of the 1st Class ticket price

to his destination, We will assume that there are 500 possible
destinations. '

begin real suitcases, briefcase, excess freight;
integer destination} array ticket price [_L 500__}

e

_2 sultcases + briefcase > 20 ___n
begin real excess wt,

- excess Wt := sultcases + briefcase - 20] :
excess freight ;= excess wt X ticketprlce EJ destinatioq}/loo
end else excess freight := 0}

. R A G S . Y B G SN Y ST GH G G TR) WD S S WD W T TN NS G AR S W GSt GA GHS I W WY G D G M P B S W AR

-84-

Here the whole program is a block, and the compound statement
after "then" also 1s a block with 1ts own block head and ?
statements, inslde the program block,

A block 1s itself a statement and therefore may cohtain other
blocks, "inner blocks",

Variables declared within a block are said to be "local" to
this block.

- Variables local to a block are availlable for use in all (
statements inside the block, including inner blocks. ’

?triébles local to a block are not available for use outside
the block. - ’ i

" In the example "sultcases" and "excess frelght" are declared
in the outer block and hence may be used in the inner block.
"excess wt" only exlsts within the inner block.

These properties of ALGOL blocks are very useful, since large

data structures only needed in a small part of the prbgram

do not occupy space in the computer memory when other parts 3
~are executed, if the part where these data are needed is

written as a block., Also the same name may be used in different

blocks B1 and B2 for different purposes without confusion., If

Bl 1s an outer block to B2, the "outer variable" is not

accessible within B2, The common name hHas 1its "local"'signifi-

cance within B2,

-85-

The block structure of ALGOL 1s fundamental for its usefulness
as component of a simulation language. |

11.9 ALGOL prograns,

An ALGCL program is a block or a compound statement having no
outer block and not heing a part of another compound statement,

11.10 Procedures,

In the counter example we have used the abbreviation "check in"
‘for the compound statement

begin read(sultcases, briefcase),;
checked 1= checked + sultcases;
tot wt 1= tot wt + sultcases + briefcase end;

The use of this abbreviation may be made "legal" by declaring
"check 1n" as a procedure,

Together with the declaratlions of variables in the block head we
write a "procedure declaration":

procedure check 1inj
begin read(sultcases, briefcase)j
checked 3= checked + sultcases)
tot wt 1= tot wt + sultcases + briefcase end;

This being done, 1t is permissible in ALGOL to use the statement
"check 1in" in the above manner, The statement is usually sald to
be a "procedure call" (correctlys "a procedure statement"),

In the above procedure declaration, the first line

procedure check 1inj

1s called the "procedure heading"., The compound statement
following the heading is called the "procedure body". In general
the procedure body 1s a block, possibly having its own declar-

atlons.

-86_

A procedure statement ("call") prescribes an execution of the
procedure body at thils place in the program,

The procedure "check in" results in operations on the same vari-
ables each time it 1s called. The read-procedure mentioned
earller may be used to assign values from an input device to any
variable, The variable which shall get a value is given as a
parameter to the calls '

read (nr passg), read(sultcases),

The procedures for inpdt and output of data ére not standardized
in ALGOL and have to be specified for the machine which is used
- for the computation,

Certain commonly used mathematical functions are, however, con-
sldered to be part of the language, e.g. the sine and cosine
- functions, the square root, the exponential function e,

! The calls for evaluatlon of e* and VI'(where X 1s a real vari-
- able) are written

exp(x), sqrt(x)

If we in a computation need repeated evaluation of a function
not being part of ALGOL, we may declare a function procedure in
- our program.

Example,

We want to declare the hyperbolic cosine cosh(x) as & procedure,
cosh(x) has a real value, and

cosh(x) = 4 (e¥ + &7%)
real procedure cosh(x); real x,
cosh 3= (exp(x) + exp(-x)) / 2;

87~

In the procedure heading we have specified that x is a real
parameter, which means that the "actual parameter" given in a
call for the procedure should be some real expression. Such
specifications are an optional part of the language, but many
compilers require specification of all parameters, since this
information makes 1t possible to generate more effdclent object
programs, ‘

A call for a function procedure 1s called a "function designator",
It 1s an expression whose type is specified by the first word of
the procedure heading., The function designator "cosh(y)" evalu-
ates the hyperbolic cosine of the real varlable y, as stated in
the procedure declaration above. y-is the actual parameter of

the call, The actual parameter can in this case be any arithmetic
expression: cosh(log(y) + O.S/z[;]) gives the hyperbolic cosine

of the value of the expression, |

. There 1s an important difference between parameters to the "read"
and "cosh" procedures, The call fead(y) assigns a value to the
variable Y, whereas the cosh procedure only uges the value of the
given actual parameter for its own purpose, '

Formal parameters of the second kind can be included in a "value
specification” in the procedure headingi

real procedure cosh(x); xa;ge Xy 2 8l X} ~=em-

A value specification improves the efflcliency of the objaot
program and should be given 1if possible,

If & formal parameter is included in & value specification, it
1s sald to be "called by value", otherwise it is “aid to be
"called by name", ' '

A parareter called by value 1s similar to a local yariable,

except that it has an initial yalue defined by the actual parameter
of the call. An assignment to a value parameter has no effect
outside the procedure body,

.88-

A parameter called by name is considered to be replaced by
whatever expression is given as the actual parameter of the call,
If an assignment is made to a name parameter, the actual para-
.meter must be a yvarjable. This variable recieves a value as a
result of the procedure call, Such a parameter is often called
an "output parameter", since it transmits output from the proce-
dure.

A procedure can refer directly to variables and other items non-
local to the procedure body, i.e. to items local to the block
containing the procedure declaration, or to outer blocks. If
the value of a non-local variable is changed within the proce-
dure body, this is called a "side-effect" of the procedure.

As an example on the general procedure concept we will formulate
a procedure for evaluating the polar coordinates (r, v) of a
point whose cartesian coordinates are (x, y). (x to the n'th
power is written xtn in ALGOL,)

procedure polar (x, y, r, v); yalue x, y; real x, y, T, v;
if x=0Ay =0 ¢thenr :=v =0

else begin r := sqrt (xP2 + yT2);
v := arctg (x, y) end;

where arctg evaluates the arc in a suitable range.

Clearly r and v must be called by name, since they are output
parameters, whereas x and y can be called by value.

The procedure statement
polar (3, 7, f, g)

will assign the vpolar coordinates of the poiht (3, 7) to the
real variables f and g.

The call
polar (z + 1, w - u, £, g)

will assign to f and g the polar coordinates of the point whose
cartesian coordinates are the current values of the expressions

z + 1 and w - u,

